Each one of the existing 625 3-digit-groups represents a 2-letter-group (b1, b2) according to the rule:
b1 * 25 + b2 = (3-digit-group)
b1-Alphabet:
V | A | K | W | I | B | M | X | O | C | N | Y | L | D | P | Z | E | F | Q | T | G | R | S | H | U |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
E | F | Q | I | B | M | X | L | D | P | Z | O | C | N | Y | S | H | U | T | G | R | V | A | K | W |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
The alphabets are constructed the following way:
1 | 2 | 3 | 4 | 5 | 6 | 7 | b1-Alphabet |
7 | 2 | 4 | 3 | 1 | 6 | 5 | b2-Alphabet |
V | I | O | L | E | T | S | |
A | B | C | D | F | G | H | |
K | M | N | P | Q | R | U | |
W | X | Y | Z |
Example:
AR = 1 * 25 + 21 = 046
Zur Zendia-Page
© Karlheinz Everts